
Automated Visualization of DNA Strand Displacement Systems

Malgorzata Nowicka and Vinay Gautam
Department of Computer Science, Aalto University, Finland

Emails: {malgorzata.nowicka, vinay.gautam}@aalto.fi
Abstract/Summary
DNA strand displacement  (DSD)  systems [1]  have emerged as  a  widely-used methodology for  embedding
computational  processes  in  the  interactions  of  pre-designed  short  DNA strands.  The  DSD  systems  design
methodology has been used to construct a variety of dynamic DNA systems, such as logic circuits, catalytic
amplifiers and neural networks, as well as to emulate chemical reaction networks. Rendering non-overlapping
2D drawings of multi-stranded DNA structures is essential to understand interactions between different species
of a given DSD system. Effective visualization of a DSD system is also helpful in communicating insights
related to its  modelling to a larger scientific community.  In this work,  we present  a tool  that  produces the
visualization of DSD systems at two levels. The species-level renders realistic, non-overlapping 2D drawings of
multi-stranded DNA structures present in a given system. Species-level rendering includes structures with some
of the most common pseudoknotted motifs whose planar drawings are challenging to render due to overlapping
structural elements. The system-level rendering produces a network of enumerated reactions from a given DSD
model that can be interactively visualized to gain quick insights about different species, their interactions and
networks.  The  visualization  tool  is  implemented  in  Python,  integrated  with  the  rule-based  DSD  reactions
enumeration tool available at https://github.com/ashleylst/DSDPy.
 
1. Visualization Methodology
The basic terminologies, e.g. domain-level description of DNA structures, enumeration of DNA species and
generation of a netlist of the enumerated set of species, used in our visualization methodology come from our
earlier work on rule-based DSD modeling [2]. The rule-based methodology for modelling DSD systems uses a
graph formalism in which DNA species are first represented as graphical structures that are then processed to
generate new DNA species by applying graph rewriting rules based on a set of generic DSD reaction types. This
graph processing exhaustively enumerates the entire space of DNA species reachable from the user's  initial
strand system design and then produces a list of DNA species and their DSD reaction network.
In the following, we briefly discuss a simple yet effective methodology used for an automated rendering and
display of reactions networks and DNA species present  in DSD systems.  The visualization methodology is
designed as a stand-alone Python module and provides an interface to the 'DSDPy' software pipeline. From the
textual  descriptions  generated  by  DSDPy  processor,  2D drawings  of  individual  DNA species  and reaction
networks are produced.
1.1 Domain-level Visualization of Multi-stranded DNA Structures
Considering an example of two multi-stranded DNA species whose domain-level textual descriptions automated
rendered drawings are shown in Figure 1. In the textual description, complementary domains are marked by (*)
and  bound domains  are  represented  by  named-pairing  (!n,  where  n  is  unique  label  for  each  pairing).  Our
visualization methodology uses domain-level descriptions of DNA species, and we represent constituent DNA
strands  as  strings  of  connected  domains  with  hinges  in  between,  where  straight-line  segments  are  used  to
represent domains. The initial configuration of DNA strings is created by placing the constituent strings along
with the chords of a circle. The ultimate goal is to bring paired domains closer while separating apart unpaired
domains to produce a non-overlapping depiction of the DNA structure in 2D.
    Once we have an initial configuration of DNA strings, the system is perturbed by randomly selecting a string
and moving one of its hinges at a time by translation or rotation. Since hinges connect the domains, the move is
propagated  to  the  adjacent  domains.  We  define  an  optimal  drawing  of  the  structure  as  a  non-crossing
arrangement of the DNA-strings, where the paired domains are anti-parallel to each other, .i.e distance between
the paired domains is minimal, and the angle between adjacent domains within the strand is maximal. Using a
simple optimization function based on these optimization criteria, we used a simulated annealing algorithm [3]
to produce realistic 2D drawings of multi-stranded DNA structures with and without pseudoknots.

                                                                                                                                                                    1

https://github.com/ashleylst/DSDPy


   Since there can be multiple arrangements of DNA strings around a circle, it is important that the strings' initial
configuration is non-crossing to avoid the entangling of strings. In the case of a pseudoknot-free multi-stranded
DNA structure, since there is always at least one such non-crossing arrangement, we find it out algorithmically
and produce an initial configuration of DNA strings using this information. 

#Domain-level description of S1
<X*!1 A*!2>
<A!2>
<L T2!3 X*!4 T1!5>
<A X!4 T2*!3>
<T1*!5 X!1 R>

#Domain-level description of S2
<a!1 b!2>
<b*!2 c d e!3>
<e*!3 f!4 a*!1 g f*!4>

Fig.1: Automated visualization of multi-stranded DNA structures. Domain-level descriptions of two multi-
stranded DNA systems (Left), and initial arrangements of strand systems and their respective rendered 2D 
drawings (right).
    In the case of a pseudoknotted DNA structure, such a non-crossing arrangement of DNA strings does not 
exist. Our original approach for drawing a pseudoknotted DNA structure is based on algorithmically searching 
for the arrangements with the least number of crossings and then using a set of tricks of flipping DNA strings 
and domains to find an alternative arrangement free from crossing eventually. One can see that such an ad hoc 
approach is non-deterministic, and therefore, we do not always succeed in producing a non-overlapping drawing 
of pseudoknotted DNA structures. Creating realistic drawings of pseudoknotted DNA structures is 
computationally more difficult than drawing pseudoknot-free structures because a pseudoknotted structure is a 
graph (and possibly a nonplanar graph) with inner cycles within the pseudoknot and possibly outer cycles 
formed between the pseudoknot and other structural elements. One approach to address the planarity issue in the 
process of generating a 2D drawing of a pseudoknotted structure is to construct a straight-line representation of 
planar embedding of the given graph, for example, by using the edge addition method of Boyer and Myrvold [4] 
and straight-line drawing algorithm by Chrobak [5]. This approach has shown promising results in our recent 
efforts to algorithmically render a realistic drawing of the most commonly used pseudoknotted DNA structures 
in the DSD systems.
1.2 Visualization of DSD reactions network
A netlist of enumerated reactions obtained from the DSDPy processor provides the basis for visualizing the DSD
reactions network. The tool supports multiple network views at different layouts, and parts of the network can 
further be interactively explored to quickly get insights about the interactions between different DNA species 
generated from the model.
References
[1] Zhang et al.,"Dynamic DNA nanotechnology using strand-displacement reactions". Nature Chemistry(2011).
[2] Gautam et al., "RuleDSD: a rule-based modelling and simulation tool for DNA strand displacement systems. In: 11th 
International Conference on Bioinformatics Models, Methods and Algorithms (2020).
[3] Kirkpatrick et al., Optimization by simulated annealing. Science, 220(4598), 671-680 (1983).
[4] Boyer et al., „On the Cutting Edge: Simplified O(n) Planarity by Edge Addition.”Journal Of Graph Algorithms And 
Applications, 8(3) (2004).
[5] Chrobak et al., “Convex Grid Drawings of 3-connected Planar Graphs.” International Journal of Computational 
Geometry and Applications 7(3) (1997).

                                                                                                                                                                    2


