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I. INTRODUCTION

Reservoir Computing (RC) [1] is a supervised learning
scheme exploiting the computational ability of non-linear
dynamical systems. In delay-feedback reservoir computing a
virtual network is achieved through time-multiplexing, trading
off input frequency and reservoir complexity. Here we inves-
tigate several features and tradeoffs that affect physical delay-
dynamical reservoirs, based on the Mackey–Glass model,
including the role of input mask, and the ‘devirtualisation’ of
the output. We evaluate performance using the NARMA-10
benchmark. We find that random binary masks with no offset
outperform other masking schemes. We find that reading the
output a subset of output nodes, the ‘devirtualised network’,
does not affect computational power, which enables a tradeoff
between output design complexity and readout frequency.

II. DELAY FEEDBACK RESERVOIR BASED ON
MACKEY-GLASS MODEL

Appeltant et al. [2] introduced the delay-feedback reservoir
computing structure. It is an effective approach to simplifying
hardware implementation, as the system has only one nonlin-
ear element along with a delay line. Here we investigate some
issues that are of interest in physical reservoir implementations
that are potentially hidden in simulated time virtual reservoirs.
Our work is still in simulation, but we move a step closer to
a physical implementation: rather than directly numerically
integrating the model equation, we use a Mackey-Glass non-
linear node and explicit delay line, all expressed in a Simulink
circuit, and we retain physical time units.

We follow [2] in introducing inputs, but we do not normalise
time (we do not set γ = 1), to retain physical time units.

ẋ =
β(xτ + δIt)

1 + (xτ + δIt)n
− γxt, xτ ≡ x(t− τ) (1)

In this paper, we use the discrete-time NARMA-10 bench-
mark to analyse the computational abilities of the Mackey–
Glass delay-based reservoir in various scenarios.

III. MASKING THE INPUT

We evaluate the computational performances of different
masking procedures (see fig.1) under two experimental con-
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Fig. 1: Time-multiplexing procedure. Top: inputs, from physical
continuous inputs to the discrete time inputs through Sample and
Hold. Middle: two masks. Bottom: four masking procedures applied
to the discretised inputs.

figurations: mask-multiplexing with offset (Eq.2), and with no
offset (Eq.3):

I(t) = I0(t)(M(t) + 1) (2)
I(t) = I0(t)M(t) (3)

We compare the computational performance of three dif-
ferent masking procedures: Sample and Hold (as a control),
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Fig. 2: Simulation results for the NARMA-10 benchmark task. 2a
and 2b are based on different time-multiplexing functions: Eq.2 and
Eq.3 respectively. Each experiment is based on 30 runs.

Binary Weight Mask and Real Weight Mask under two different
mask-multiplexing equations, with offset (Eq.2) and with no
offset (Eq.3). We use three different configurations to investi-
gate whether the randomness of input signals or of the masking
is dominating the computational performance of the system: i)
SIDM has the same input sequence but different random masks
for each run; ii) DISM has different random input sequences
but the same masks for each run; iii) DIDM has different input
sequences and different masks for each run.

The results are shown in fig.2. As expected, Sample and
Hold with no masking performs poorly: there are no virtual
nodes. Binary masking outperforms real weight masking, and
no offset outperforms offset, in this case. The source of
randomness (input or mask) does not affect the performance.
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Fig. 3: ‘Devirtualisation’ options with N = 6 nodes. Each coloured
square block represent one output signal from one virtual node. Ni

indicates the number of connected nodes (output lines). Tsample

is the sampling time, i.e, every connected output line collects data
simultaneously at each Tsample time. When Ni = N , every virtual
node N1..N6 has an output line, and the output is sampled every
τ . When Ni = N/2, nodes N1..N3 have output lines: at τ/2 they
output the first three blocks, at time τ they output the last three
blocks. Similarly, when Ni = N/3, nodes N1..N2 have output lines,
outputting each τ/3.

IV. DEVIRTUALISING THE OUTPUT

The delay line masking trades off space (number of inputs
and outputs) against time (frequency of providing an input or
reading an output).

We investigate a sub-sampling devirtualisation approach,
that allows this tradeoff to be altered: reducing the readout
frequency by using multiple output lines while the number of
virtual nodes in the reservoir layer is consistent.

Fig. 3 illustrates this output ‘devirtualisation’ concept. If
we set the sampling time equal to τ , the delay time along
the physical tapped delay, we need to use N output lines to
collect data simultaneously from each of the N ‘devirtualised
nodes’. We have increased the number of outputs to N , and
reduced the output frequency by N (from 1/θ to 1/τ ). If we
sub-sample the system with time τ/2, only half of the virtual
nodes are required to output data simultaneously.

No data is lost or changed in this output devirtualisation:
the same data is sampled in each case, and the observed
performances (not shown here) are identical. This is our
control case: in future work we will include the effect of losses
along the delay line.
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